Java虚拟机(二)-Java类加载时机与过程

By prince No comments

一、类加载机制概述

 

我们知道,一个.java文件在编译后会形成相应的一个或多个Class文件(若一个类中含有内部类,则编译后会产生多个Class文件),但这些Class文件中描述的各种信息,最终都需要加载到虚拟机中之后才能被运行和使用。事实上,虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验,转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型的过程就是虚拟机的 类加载机制。

与那些在编译时需要进行连接工作的语言不同,在Java语言里面,类型的加载和连接都是在程序运行期间完成,这样会在类加载时稍微增加一些性能开销,但是却能为Java应用程序提供高度的灵活性,Java中天生可以动态扩展的语言特性多态就是依赖运行期动态加载和动态链接这个特点实现的。例如,如果编写一个使用接口的应用程序,可以等到运行时再指定其实际的实现。这种组装应用程序的方式广泛应用于Java程序之中。

 

二、类加载的时机

 

Java类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using) 和 卸载(Unloading)七个阶段。其中验证、准备、解析3个部分统称为连接(Linking),如图所示:

其中,加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班的“开始”(仅仅指的是开始,而非执行或者结束,因为这些阶段通常都是互相交叉的混合进行,通常会在一个阶段执行的过程中调用或者激活另一个阶段),而解析阶段则不一定(它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定。

 

1、类加载时机

 

什么情况下虚拟机需要开始加载一个类呢?虚拟机规范中并没有对此进行强制约束,这点可以交给虚拟机的具体实现来自由把握。

 

2、类初始化时机

 

对于初始化阶段虚拟机规范是严格规定了如下几种情况,如果类未初始化会对类进行初始化:

(1).创建类的实例

遇到new、getstatic、putstatic或invokestatic这四条字节码指令(注意,newarray指令触发的只是数组类型本身的初始化,而不会导致其相关类型的初始化,比如,new String[]只会直接触发String[]类的初始化,也就是触发对类[Ljava.lang.String的初始化,而直接不会触发String类的初始化)时,如果类没有进行过初始化,则需要先对其进行初始化。生成这四条指令的最常见的Java代码场景是:

    • 使用new关键字实例化对象的时候;
    • 读取或设置一个类的静态字段(被final修饰,已在编译器把结果放入常量池的静态字段除外)的时候;
    • 调用一个类的静态方法的时候。

(2).对类进行反射调用(java.lang.reflect)的时候,如果类没有进行过初始化,则需要先触发其初始化

(3).当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化

(4).当虚拟机启动时,用户需要指定一个要执行的主类(包含main 方法的那个类),虚拟机会先初始化这个主类

(5).当使用jdk1.7动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getstatic,REF_putstatic,REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行初始化,则需要先出触发其初始化。

注意,对于这五种会触发类进行初始化的场景,虚拟机规范中使用了一个很强烈的限定语:“有且只有”,这五种场景中的行为称为对一个类进行 主动引用。除此之外,所有引用类的方式,都不会触发初始化,称为 被动引用。

特别需要指出的是,类的实例化类的初始化是两个完全不同的概念:

  • 类的实例化是指创建一个类的实例(对象)的过程;
  • 类的初始化是指为类中各个类成员(被static修饰的成员变量)赋初始值的过程,是类生命周期中的一个阶段。

3、被动引用的几种经典场景

 

1)、通过子类引用父类的静态字段,不会导致子类初始化

2)、通过数组定义来引用类,不会触发此类的初始化

3)、常量在编译阶段会存入调用类的常量池中,本质上并没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化

 

三、类加载过程

 

1、加载(Loading)

 

在加载阶段(可以参考java.lang.ClassLoader的loadClass()方法),虚拟机需要完成以下三件事情:

(1). 通过一个类的全限定名来获取定义此类的二进制字节流(并没有指明要从一个Class文件中获取,可以从其他渠道,譬如:网络、动态生成、数据库等);

(2). 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构;

(3). 在内存中(对于HotSpot虚拟就而言就是方法区)生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口;

加载阶段和连接阶段(Linking)的部分内容(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的内容,这两个阶段的开始时间仍然保持着固定的先后顺序。

特别地,第一件事情(通过一个类的全限定名来获取定义此类的二进制字节流)是由类加载器完成的,具体涉及JVM预定义的类加载器、双亲委派模型等内容,详情请参见我的博文《Java虚拟机(一)-Java类加载的方式》中的说明,此不赘述。

 

2、验证(Verification)

 

验证是连接阶段的第一步,这一阶段的主要目的是为了确保Class文件的字节流包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。验证阶段是非常重要的,这个阶段是否严谨,直接决定了Java虚拟机是否能够承受恶意代码的攻击,从执行性能的角度上讲,验证阶段的工作量在虚拟机的类加载子系统中又占据了相当大的一部分。
此阶段主要包含如下4个部分的验证 :

文件格式验证:验证字节流是否符合Class文件格式的规范(例如,是否以魔术0xCAFEBABE开头、主次版本号是否在当前虚拟机的处理范围之内、常量池中的常量是否有不被支持的类型)

元数据验证:对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求(例如:这个类是否有父类,除了java.lang.Object之外);

字节码验证:通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的;

符号引用验证:确保解析动作能正确执行。

验证阶段是非常重要的,但不是必须的,它对程序运行期没有影响。如果所引用的类经过反复验证,那么可以考虑采用-Xverifynone参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。

 

3、准备(Preparation)

 

准备阶段是正式为类变量(static 成员变量)分配内存并设置类变量初始值(零值)的阶段,这些变量所使用的内存都将在方法区中进行分配。这时候进行内存分配的仅包括类变量,而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在堆中。其次,这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:

public static int i= 1;

那么,变量i在准备阶段过后的值为0而不是1。因为这时候尚未开始执行任何java方法,而把value赋值为1的putstatic指令是程序被编译后,存放于类构造器方法<clinit>()之中,所以把value赋值为123的动作将在初始化阶段才会执行。至于“特殊情况”是指:当类字段的字段属性是ConstantValue时,会在准备阶段初始化为指定的值,所以标注为final之后,value的值在准备阶段初始化为1而非0。

  public static final int i= 1;

 

4、Resolution解析

 

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。说明一下:

符号引用:符号引用是以一组符号来描述所引用的目标,符号可以是任何的字面形式的字面量,只要不会出现冲突能够定位到就行。布局和内存无关。

直接引用:是指向目标的指针,偏移量或者能够直接定位的句柄。该引用是和内存中的布局有关的,并且一定加载进来的。

解析主要包括:

1.类或接口的解析 2.字段解析 3.类方法解析 4.接口方法解析

 

5、Initialization初始化

 

类初始化阶段是类加载过程的最后一步,前面的类加载过程中,除了在加载阶段用户应用程序可以通过自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java程序代码(字节码)。

举个通俗的例子,如果类中有语句:private static int a = 10,它的执行过程是这样的,首先字节码文件被加载到内存后,先进行链接的验证这一步骤,验证通过后准备阶段,给a分配内存,因为变量a是static的,所以此时a等于int类型的默认初始值0,即a=0,然后到解析(后面在说),到初始化这一步骤时,才把a的真正的值10赋给a,此时a=10。

初始化对于类来说,就是执行类构造器<clinit>()方法的过程。<clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块static{}中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问。如下:

public class Test{
     static{
       i=0;
//Error:Cannot reference a field before it is defined(非法向前应用)
       System.out.println(i);
     }
     static int i=1;
}

那么注释报错的那行代码,改成下面情形,程序就可以编译通过并可以正常运行了。

public class Test{
    static{
       i=0;
       //System.out.println(i);
    }

    static int i=1;

    public static void main(String args[]){
        System.out.println(i);
    }
}
输出: 
1

类构造器<clinit>()与实例构造器<init>()不同,它不需要程序员进行显式调用,虚拟机会保证在子类类构造器<clinit>()执行之前,父类的类构造<clinit>()执行完毕。由于父类的构造器<clinit>()先执行,也就意味着父类中定义的静态语句块/静态变量的初始化要优先于子类的静态语句块/静态变量的初始化执行。特别地,类构造器<clinit>()对于类或者接口来说并不是必需的,如果一个类中没有静态语句块,也没有对类变量的赋值操作,那么编译器可以不为这个类生产类构造器<clinit>()。

虚拟机会保证一个类的类构造器<clinit>()在多线程环境中被正确的加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的类构造器<clinit>(),其他线程都需要阻塞等待,直到活动线程执行<clinit>()方法完毕。特别需要注意的是,在这种情形下,其他线程虽然会被阻塞,但如果执行<clinit>()方法的那条线程退出后,其他线程在唤醒之后不会再次进入/执行<clinit>()方法,因为 在同一个类加载器下,一个类型只会被初始化一次。如果在一个类的<clinit>()方法中有耗时很长的操作,就可能造成多个线程阻塞,在实际应用中这种阻塞往往是隐藏的,如下所示:

public class DealLoopTest {
       static{
          System.out.println("DealLoopTest...");
       }
       static class DeadLoopClass {
           static {
             if (true) {
                  System.out.println(Thread.currentThread()
                   + "init DeadLoopClass");
                   while (true) { // 模拟耗时很长的操作
                   }
              }
           }
        }

      public static void main(String[] args) {
            Runnable thread= new Runnable() { // 匿名内部类
               public void run() {
                 System.out.println(Thread.currentThread() + " start");
                 DeadLoopClass deadLoopClass = new DeadLoopClass();
                 System.out.println(Thread.currentThread() + " run over");
               }
            };

            Thread thread1 = new Thread(thread);
            Thread thread2 = new Thread(thread);
            thread1.start();
            thread2.start();
      }
} 

输出
DealLoopTest...
Thread[Thread-1,5,main] start
Thread[Thread-0,5,main] start
Thread[Thread-1,5,main]init DeadLoopClass

<clinit>()方法的执行顺序

父类静态变量初始化
父类静态语句块
子类静态变量初始化
子类静态语句块

 

发表评论

 

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据